Yansong Gao

Email: gaoyans@sas.upenn.edu Phone: (+01)215-720-5880		GitHub: Yansongga LinkedIn: YansongGao	Office: 1N1 DRL, Upenn Google Scholar: YansongGao			
Research interests	Computer Vi ing, Diffusio Learning	[•] Vision, Machine Learning, Transfer learning, Unsupervised Learn- sion-based Generative Models, Information Theory, Bayesian Deep				
Education	University of PennsylvaniaPhiladelphia, PAPhD Candidate in Applied Math and Compytational ScienceSept. 2017 –PresentAdvisor: Pratik Chaudhari. GPA: 3.95/4.0					
	Shanghai Ji BA in Applie Advisor: Yao	ao Tong University d Mathematics, minor in Physics kun Wu. <i>GPA: 93.2/100.</i>	Shanghai, China Sept. 2013 – May 2017			
Experience	Computer V Advisor: Xin Generative M Baidu Resear	V ision Research Intern Zhou and Zhihong Pan Iodels, Diffusion-based Generative M ch, Sunnyvale, California, United Sta	May. 2022 – Sept.2022 odeling tes			
	Research A s Ph.D Adviso: GRASP Robo	s sistant r: Pratik Chaudhari tics Laboratory, University of Pennsy	Sept. 2019 – Present Ivania			
Honors and scholarships	National Hig Chinese Phy Academic Ex National Sch Benjamin Fra	h School Mathematics Olympiad Lea sics Olympiad, First Prize cellent Scholarship olarship nklin Fellowship	gue, First Prize 2012 2012 2014-2015 2015-2016 2017-2019			
Selected publications	Tracked pub Information of 2021 1. Fast Diff Backward F	lications in ICML2022, ICML2021, ICA and Computation 2022, Machine Learr fusion Probabilistic Model Samp rror Analysis	ML2020, IJCAI2019, Journal: ning: Science and Technology ling through the lens of			

	Yansong Gao, Zhihong Pan, Xin Zhou, Le Kang, Pratik Chaudhari.
	In submission 2023
	2. Deep Reference Priors: What is the best way to pre-train a model?
	Yansong Gao, Rahul Ramesh, Pratik Chaudhari. <i>ICML</i> , <i>2022.</i>
	3. Beyond the worst-case analysis of random priority: Smoothed and
	average-case approximation ratios in mechanism design
	Xiaotie Deng. Yansong Gao. Jie Zhang
	Information and Computation 2022
	A. An Information-Geometric Distance on the Space of Tasks
	Yansang Gao, Pratik Chaudhari
	5 A Free Energy Principle for Penrecentation Learning
	S. A Free-Energy Frinciple for Representation Learning
	ICML. 2020.
	6. Average-case Analysis of the Assignment Problem with Independent
	Preferences
	Yansong Gao, Jie Zhang,
	IfCAL 2019.
	7. Smoothed and Average-case Approximation Ratios of Mechanisms:
	Beyond the Worst-case Analysis
	Xiaotie Deng Yansong Gao Jie Zhang
	MFCS 2017
	8. Comparison of Scheduling Mechanisms from a Average-case Analy-
	sis Lens
	Yansong Gao, Jie Zhang
	In Review 2022
Talks	International Conference on Machine Learning(ICML) 2022
Taiks	Title: Deen Reference Priors
	International Conference on Machine Learning(ICML) 2021
	Title: An Information-Geometric Distance on the Space of Tasks
	The. The mornation oconcerce Distance on the space of Tasks
	NeurIPS 2020 Workshop: Deep Learning through Information Geome-
	trv
	Contributed Talk: An Information-Geometric Distance on the Space of Tasks
	ICLR 2020 Workshop: Deep Neural Models and Differential Equations
	Contributed Talk: A Free-Energy Principle for Representation Learning
	International Conference on Machine Learning(ICML) 2020
	Title: A Free-Energy Principle for Representation Learning
Skille	Programming
OMIIS	11051 annining

	Proficient in: Python, PyTorch, MatLab, LATEX. Familiar with: C, C++, TensorFlow.				
Teaching experience	Teaching Assistant, ESE Department (Upenn)Fall 2019ESE 546: Principles of Deep LearningFall 2019Teaching Assistant, Department of Mathematics (Upenn)Spring 2018MATH 210: Math in the MediaFall 2019				
	Recitation Instructor, Department of Mathematics (Upenn) Fall 2018 MATH 104: Calculus				
Graduate Courses	Representation Learning in Co Statistical Mechanics Mathematical Statistics Advanced Probability Reinforcement learning Functional Analysis Combinatorial Analysis and G	omputer Vision I Optimization Methods in Mac Advanced Topics in Mathema Stocha Geometric Methods in Com Real and Com raph Theory	Deep Learning Methods in Machine Learning opics in Mathematical Statistics Stochastic Processes Methods in Computer Science Real and Complex Analysis Algebra		
Other interests	Condensed Matter Physic Soccer.				